Mathematische Logik
Wintersemester 2013/2014

Mathematisches Institut Abteilung für Math. Logik

Dies ist die Homepage des Oberseminars "Mathematische Logik" im Wintersemester 2013/2014.

Heike Mildenberger.
Martin Ziegler.

Zeit und Ort

Mi 16:30-18:00, SR 404 in der Eckerstr. 1, vorher ab kurz nach 4 Tee in Zimmer 310


  • 23.10.2013
    Mohsen Khani:
    Expansions of the ordered field of reals
    Abstract: I will briefly describe the notion of "tameness" for the expansions of the ordered field of real numbers. I will then explain the notion of the "open core" of an structure and present two results of van den Dries, one on expansions with discrete subsets, and the other, on the expansions with dense subsets.
    I will finally talk about parts of my PhD thesis on the combination of these two: expansions with a discrete and a dense subset.
  • 30.10.2013
    Martin Ziegler:
  • 13.11.2013
    Otto Kegel:
    Large groups
  • 19.11.2013 (ausnahmsweise schon am Dienstag von 16:15 bis 17:45
    in Hörsaal II Albertstraße 23b; vorher um 15:45 Tee in Zimmer 310, Eckerstr. 1)
    Alexander Prestel:
    Definable valuation rings
  • 27.11.2013
    Markus Junker:
    Non omega-categorical structures with finitely many reducts

  • 4.12.2013
    um 16:00 (!), Tee um 15:30 (!)
    Gabriel Salazar:
    Realization of aleph_k-free modules with few endomorphisms via Shelah's
    Easy Black Box

  • 11.12.2013
    Juan Diego Caycedo:
    The first-order theory of universal specialisations of Zariski structures

  • 18.12.2013
    Giorgio Laguzzi:
    Silver versus club-Silver in the generalized Cantor space

  • 8.1.2014
    um 16:00 (!), Tee um 15:30 (!)
    Philipp Schlicht:
    The Hurewicz dichotomy for generalized Baire spaces
    Abstract: The Hurewicz dichotomy states that a Polish space is not K_sigma, i.e. not a union of countably many compact sets, if and only if it contains a closed subspace homeomorphic to the Baire space. We consider the analogous problem for closed subsets of the generalized Baire space kappa^kappa. This is joint work with Philipp Lücke and Luca Motto Ros.

  • 22.1.2014
    Heike Mildenberger:
    Finitely many near-coherence classes of ultrafilters

  • 5.2.2013
    um 16:00 (!), Tee um 15:30 (!)
    Luca Motto Ros:
    Bad Wadge-like reducibilities on the Baire space and on
    arbitrary ultrametric Polish spaces
    Abstract: We show that there are very natural Wadge-like reducibilities on the Baire space whose induced degree-structure behaves very badly (it contains infinite antichains and/or infinite descending chains). Moreover, we analyze the reducibilities induced by, respectively,
    uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and give sufficient and necessary (topological) conditions on such spaces for the corresponding degree-structures being well-behaved.

  • 12.2.2014
    Enrique Casanovas:
    Bounded Hyperimaginaries

Last update on Jan. 30, 2014, H.M.