The descriptive set theory of the Lebesgue density theorem

A. Andretta¹ R. Camerlo²

¹Dipartimento di Matematica
Università di Torino

²Dipartimento di Matematica
Politecnico di Torino

June 2011
The category algebra.

Work in some perfect Polish space, e.g. ω_2. \mathcal{B} is the collection of all sets with the property of Baire, M_{GR} is the ideal of meager sets,

$$
\mathcal{B}/M_{GR} \cong \text{Bor}/M_{GR} = \text{Cat}
$$

Cat is unique up-to isomorphism, i.e. it does not depend on the Polish space. The map

$$
\rho: \text{Cat} \to \text{RO}
$$

is a selector, and Cat can be identified with the collection of all regular open sets.

Cat is a Polish space.
The measure algebra.

\(\mu \) a continuous probability Borel measure on some perfect Polish space, e.g. the usual Lebesgue measure on \(\omega^2 \). \(\text{Meas} \) is the collection of all sets measurable sets, \(\text{Null} \) is the ideal of measure-zero sets,

\[
\text{Meas}/\text{Null} \cong \text{Bor}/\text{Null} = \text{Malg}
\]

\(\text{Malg} \) is unique up-to isomorphism, i.e. it does not depend on \(\mu \). \(\text{Malg} \) is a Polish space:

\[
\delta([A], [B]) = \mu (A \triangle B)
\]
The Lebesgue density theorem

Definition

\(x\) has density \(r \in [0; 1]\) in \(A \subseteq \omega^2\) if

\[
D_A(x) \overset{\text{def}}{=} \lim_{n \to \infty} \frac{\mu(A \cap N_x \upharpoonright n)}{\mu(N_x \upharpoonright n)} = r.
\]

Theorem (Lebesgue)

Let \(A \subseteq \omega^2\) be Lebesgue measurable. Then

\[
\Phi(A) = \{x \in \omega^2 \mid x \text{ has density } 1 \text{ in } A\}
\]

is Lebesgue measurable, and \(\mu(A \triangle \Phi(A)) = 0\).

In other words: \(D_A\) agrees with \(\chi_A\) almost everywhere.
The Lebesgue density theorem

If $\mu(A \triangle B) = 0$ then $\Phi(A) = \Phi(B)$, so

$$\Phi: \text{MALG} \rightarrow \text{MEAS}$$

is a selector. This is the analogue of $\rho: \text{CAT} \rightarrow \text{RO}$.

Question

What is the complexity of $\Phi(A)$?
Localization

Definition

The localization of A at s is

$$A_{[s]} = \left\{ x \in \omega^2 \mid s \upharpoonright x \in A \right\}$$

Thus $s \upharpoonright A_{[s]} = A \cap N_s$.

Trivial observation

$$\mu(A \triangle B) = 0 \iff \forall s \in \omega^2 \left(\mu(A_{[s]}) = \mu(B_{[s]}) \right)$$

Thus a measure class $[A]$ is completely determined by the map $s \mapsto \mu(A_{[s]})$.
Density
A. Andretta, R. Camerlo

The motivation
Complete Boolean algebras
Lebesgue's theorem
The density topology

Results
Πᵢᵢ⁻¹-completeness
Wadge degrees
Dualistic sets

Comeagerness
Forcing
Φ is Borel

Would you like to see some proofs?
Πᵢᵢ⁻¹ completeness
Inside \(\Delta \)

Complexity of \(\Phi \)

Since

\[x \in \Phi(A) \iff \forall k \exists n \forall m \geq n (\mu(A_{|x|m}) \geq 1 - 2^{-k-1}) \]

then

Proposition (Folklore)

For all measurable \(A \)

\[\Phi(A) \in \Pi^0_3. \]

Question

Is \(\Pi^0_3 \) optimal?
The density topology

- \(A \subseteq B \Rightarrow \Phi(A) \subseteq \Phi(B) \),
- \(\Phi(A \cap B) = \Phi(A) \cap \Phi(B) \),
- \(\bigcup_{i \in I} \Phi(A_i) \subseteq \Phi\left(\bigcup_{i \in I} A_i \right) \),
- if \(A \) is open, then \(A \subseteq \Phi(A) \).

Definition

\[\mathcal{T} = \{ A \in \text{MEAS} \mid A \subseteq \Phi(A) \} \]

is the density topology. It is finer than the usual topology.
The density topology

Theorem (Scheinberg 1971, Oxtoby 1971)

\[A = \Phi(A) \] if and only if \(A \) is open and regular in \(\mathcal{T} \).

\[\Phi : \text{MALG} \rightarrow \text{RO}_{\mathcal{T}} \]

- \(\text{NULL} = \text{MGR}_{\mathcal{T}} \) (Oxtoby, 1971)
- \(\mathcal{T} \) is neither first countable, nor second countable, nor Lindelöf, nor separable.
- \(\mathcal{T} \) is Baire.
Recall that $\Phi(A)$ is always Π^0_3.

Theorem

There is an A such that $\Phi(A)$ is complete Π^0_3.

Clearly

$$\text{Int}(A) \subseteq \Phi(A) \subseteq \text{Cl}(A).$$

and $A = \Phi(A)$ if A is clopen.

Question

Can $\Phi(A)$ be something other than clopen or complete Π^0_3?

Yes!
Wadge degrees

Definition

A is Wadge reducible to B

\[A \leq_W B \]

just in case \(A = f^{-1}(B) \) for some continuous \(f: \omega^2 \to \omega^2 \).

\[A \equiv_W B \text{ iff } A \leq_W B \land B \leq_W A. \]

The equivalence classes \([A]_W\) are called Wadge degrees.

For \(d \subseteq \Pi^0_3 \) a Wadge degree, let

\[\mathcal{W}_d = \{ [A] \mid \Phi(A) \in d \} \]
The sets \mathcal{W}_d are non-empty, in fact are dense in the topological space MALG:

$$\forall \varepsilon \forall A \forall d \subseteq \Pi^0_3 \exists C \in \Pi^0_1 \exists U \in \Sigma^0_1$$

$$\left(\Phi(C) = \Phi(U) \in d \land \mu(A \triangle C) < \varepsilon \right).$$
Density
A. Andretta, R. Camerlo

The motivation
Complete Boolean algebras
Lebesgue's theorem
The density topology

Results
Π^0_3-completeness
Wadge degrees
Dualistic sets

Comeagerness
Forcing
$\hat{\Phi}$ is Borel

Would you like to see some proofs?
Π^0_3-completeness
Inside Δ^0_3

Dualistic sets

Recall that $D_A(x) = 0, 1$ for almost all x.

Definition
A set A is dualistic (or Manichæan) if $D_A(x) = 0, 1$ for all x. M is the Boolean algebra of all dualistic sets.

Clearly being dualistic depends on the equivalence class of A, so

$$A \in M \iff \Phi(A) \in M.$$

Fact
$A = \Phi(A)$ is dualistic iff A is T-clopen, i.e.,

$$M \cap \text{ran}(\Phi) = \Delta^0_1-T$$
Dualistic sets

Proposition

\[\forall A \in \text{Meas} \ (A \in \mathcal{M} \Rightarrow \Phi(A) \in \Delta^0_2). \]

We can refine the Metric Approximation Theorem for \(\Delta^0_2 \) degrees:

\[\forall \varepsilon > 0 \ \forall A \ \forall d \subseteq \Delta^0_2 \ \exists C \in \Pi^0_1 \ \exists U \in \Sigma^0_1 \ (\Phi(C) = \Phi(U) \in \mathcal{W}_d \cap \mathcal{M} \land \mu(A \triangle C) < \varepsilon) \]
A comeager set

Theorem

Let \(d = \Pi_3^0 \setminus \Delta_3^0 \) be the degree of the complete \(\Pi_3^0 \) sets. Then \(W_d \) is comeager in \(\mathcal{M}_{\text{ALG}} \).
Given any measurable A there are $F \subseteq A \subseteq G$ with $F \in \Sigma_2^0$ and $G \in \Pi_2^0$ such that $\mu(A) = \mu(F) = \mu(G)$.

Theorem

$\{ [A] \mid [A] \cap \Delta_2^0 = \emptyset \}$ is comeager in MALG.

Another comeager set

C’m on, we all knew that...
Dense sets in boolean algebras

By the Metric Approximation Theorem, the \mathcal{W}_d are *topologically* dense in MALG. But MALG is a Boolean algebra (i.e. a forcing notion) so there is a competing notion of *density*.

Theorem

Let $d = \Pi^0_3 \setminus \Delta^0_3$ be the degree of the complete Π^0_3 sets. If $\emptyset \neq A = \Phi(A)$ has empty interior, then $A \in d$.

Therefore \mathcal{W}_d contains a dense open set.
Recall that Φ induces a map $\hat{\Phi} : MALG \to \Pi^0_3$,

$$\hat{\Phi}([A]) = \Phi(A).$$

Fix some standard coding $\pi : \omega^2 \to \Pi^0_3$

Proposition

$\hat{\Phi}$ is Borel, i.e. there is a Borel $\mathcal{F} : MALG \to \omega^2$ such that

$$\hat{\Phi}([A]) = \pi(\mathcal{F}([A])).$$
Sketch of the proof for Π^0_3 completeness

- T a pruned tree such that $[T]$ has positive measure and empty interior. Thus $\neg[T] = \bigcup_n N_{t_n}$.
- $n < m \Rightarrow \text{lh}(t_n) < \text{lh}(t_m)$ and $\exists \omega \in (\text{lh}(t_n) + 1 < \text{lh}(t_{n+1}))$.
- For all $t \in T$ there is a shortest $s \supset t$ such that $s \notin T$. s is the target of t.
- Let $\tau(t) = \text{lh}(\text{target of } t) - \text{lh}(t)$, $\tau : T \to \omega \setminus \{0\}$.
- For $x \in [T]$,
 $$ x \in \Phi([T]) \iff \lim_{n \to \infty} \tau(x \upharpoonright n) = \infty. $$
Sketch of the proof for Π^0_3 completeness, ctd.

The set

$$P = \{ z \in \omega \times \omega 2 \mid \forall m \forall n \ z(n, m) = 0 \}.$$

is complete Π^0_3.

Given $a : n \times n \to 2$ construct a node $\varphi(a) \in T$ so that

$$a \subset b \Rightarrow \varphi(a) \subset \varphi(b),$$

and

$$\omega \times \omega 2 \to [T], \quad z \mapsto \bigcup_n \varphi(z \upharpoonright n \times n)$$

witnesses $P \leq_w \Phi([T])$.

Let \(a : (n + 1) \times (n + 1) \to 2 \). (Say \(n = 4 \))

Case 1:

\[
\begin{array}{cccc|c}
 a_{0,4} & a_{1,4} & a_{2,4} & a_{3,4} & 0 \\
 a_{0,3} & a_{1,3} & a_{2,3} & a_{3,3} & 0 \\
 a_{0,2} & a_{1,2} & a_{2,2} & a_{3,2} & 0 \\
 a_{0,1} & a_{1,1} & a_{2,1} & a_{3,1} & 0 \\
 a_{0,0} & a_{1,0} & a_{2,0} & a_{3,0} & 0 \\
\end{array}
\]

Then pick \(t \supset \varphi(a \upharpoonright n \times n) \) such that

\[
\tau(t) \geq \max \{ n + 1, \tau(\varphi(a \upharpoonright n \times n)) \}.
\]
Sketch of the proof for Π^0_3 completeness, ctd.

Let $a: (n + 1) \times (n + 1) \to 2$. (Say $n = 4$)

Case 2:

<table>
<thead>
<tr>
<th></th>
<th>$a_{0,4}$</th>
<th>$a_{1,4}$</th>
<th>$a_{2,4}$</th>
<th>$a_{3,4}$</th>
<th>$a_{4,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{0,3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{0,2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{0,1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Then pick $t \supset \varphi(a \upharpoonright n \times n)$ such that

$$\tau(t) = 3.$$
The Wadge hierarchy on ω_2.

- A set A (or degree) is self dual if $A \equiv_W \neg A$. Otherwise it is non-self-dual.
- Self-dual and non-self-dual pairs alternate.
- At all limit levels there is a non-self-dual pair.

limit level
Given $f : \omega \rightarrow \omega \setminus \{0\}$ and sets A_0, A_1, \ldots consider the set

$$\text{Rake}^-(f; (A_n)_n)$$
How to construct larger degrees.

If $\exists \infty n (f(n) \geq 2)$ and the A_ns are \mathcal{T}-regular, i.e. $\Phi(A_n) = A_n$ then so is $\text{Rake}^- (f; (A_n)_n)$. Moreover

- if $A = A_0 = A_1 = \ldots$ are self-dual, then $\text{Rake}^- (f; (A_n)_n)$ is non-self-dual and immediately above A,
- if $A_0 <_W A_1 <_W A_2 <_W \ldots$ then $\text{Rake}^- (f; (A_n)_n)$ is non-self-dual and immediately above the A_ns.

Note that the rake $\text{Rake}^- (f; (A_n)_n)$ has no pole, i.e., $0^{(\infty)}$ does not belong to this set. In order to construct the dual degrees we need another kind of rake, a pole and densely packed tines.
How to construct larger degrees.

\[\text{Rake}^+ (f; (A_n)_n) \]

\[\omega_2 \]

\[A_0 \]

\[A_1 \]

\[A_2 \]

\[A_3 \]

\[A_4 \]
How to construct larger degrees.

If \(\lim_{n} f(n) = \infty \) then and the \(A_n \)s are \(\mathcal{T} \)-regular, i.e. \(\Phi(A_n) = A_n \) then so is \(\text{Rake}^+(f; (A_n)_n) \). Moreover

\[
\text{Rake}^+(f; (A_n)_n) \equiv_{w} \neg \text{Rake}^-(f; (A_n)_n) .
\]

If \(A \) and \(B \) are \(\mathcal{T} \)-regular then so is

\[
A \oplus B = 0^\complement A \cup 1^\complement B .
\]

Arguing this way, we can climb up to \(\Delta^0_2 \).
Wadge defined two operations A^\natural and A^\flat on subsets of the *Baire space*

$$A^\natural = \left\{ s_0^+ s_1^+ s_2^+ \ldots s_n^+ x^+ \mid n \in \omega, s_i \in <\omega \omega, x \in A \right\}$$

$$A^\flat = A^\natural \cup \{ x \in \omega \omega \mid \exists \infty n \ (x(n) = 0) \}$$

where s^+ and x^+ are the sequences obtained from s and x by adding a 1 to all entries.

The idea is that A^\natural is the union of ω many layers of the form

$$A^+ = \{ x^+ \mid x \in A \}$$
Jumping ω_1 levels.

Theorem (Wadge)

If A is self-dual, then A^\ddagger and A^\flat form a non-self-dual pair and

$$\|A^\ddagger\|_W = \|A^\flat\|_W = \|A\|_W \cdot \omega_1.$$

The operations A^\ddagger and A^\flat together with the (analsogs of) the Rake operations, are sufficient to construct sets of rank $< \omega_1^{\omega_1}$, i.e. the Δ^0_3 sets.
Jumping ω_1 levels.

An analogue of A^+.

- $s \upharpoonright i = \bar{s} \upharpoonright ii$, for $s \in <\omega 2$.
- $\bar{x} = \bigcup_n x \upharpoonright n$, for $x \in \omega 2$.
- Replace A with $\{\bar{x} \mid x \in A\}$, but...
- Does not work, since $\{\bar{x} \mid x \in \omega 2\}$ is of measure 0!
- The cure: enlarge $\{\bar{x} \mid x \in A\}$ like Rake^- was enlarged to Rake^+. The resulting set is called $\text{Plus}(A)$.
- In fact we construct $\text{Plus}(A; r)$ (with $r \in (0; 1)$) so that $\mu \left(\text{Plus}(A; r)_{[\bar{s}]} \right) \geq r$ for all s.
- If A is \mathcal{T}-regular (i.e., $A = \Phi(A)$), then so is $\text{Plus}(A; r)$.
Jumping ω_1 levels.

Construct $\text{Nat}(A)$ and $\text{Flat}(A)$: they are the analogs of A^\sharp and A^\flat, and have rank $\|A\|_W \cdot \omega_1$.

Using the operations $\text{Nat}(A)$, $\text{Flat}(A)$, $\text{Rake}^{-} A$, $\text{Rake}^{+} A$, and \oplus it is possible to construct a closed sets C such that $\Phi(C)$ is of any given Wadge degree in Δ^0_3.
Nat(A)

Fix $0 < r < 1$. Nat(A) is composed of ω-many layers:

\[
\begin{align*}
\text{Plus}(A; r) \\
\text{Plus}(A; r) \\
\text{Plus}(A; r)
\end{align*}
\]

- If x settles inside a layer, then $x = s^\sim y$ and the density of x in Nat(A) will be ‘similar’ to the density of y in A.
- Every time we climb to a higher level, the density drops momentarily to $\leq 1/2$. So if x climbs infinitely many layers, then x will not have density 1 in Nat(A).
Fix $0 < r_0 < r_1 < r_2 < \cdots \to 1$.

Flat(A) is the set is composed of ω-many layers

\[
\vdots
\]

\[
\text{Plus}(A; r_2)
\]

\[
\text{Plus}(A; r_1)
\]

\[
\text{Plus}(A; r_0)
\]

- If x settles inside a layer, then $x = s \upharpoonright y$ and the density of x in Flat(A) will be ‘similar’ to the density of y in A.
- In the layer n, the density will always be $\geq r_n$. So if x climbs infinitely many layers, then x will have density 1 in Flat(A).
Density

A. Andretta,
R. Camerlo

The motivation
Complete Boolean algebras
Lebesgue's theorem
The density topology

Results
Π^0_3-completeness
Wadge degrees
Dualistic sets

Comeagerness
Forcing
$\hat{\Theta}$ is Borel

Would you like to see some proofs?
Π^0_3 completeness
Inside Δ^0_3